Journal of Computational Physi&§3,467-487 (1999)

®
Article ID jcph.1999.6286, available online at http://www.idealibrary.conlnE &l.

A Conservative Spectral Method for Several
Two-Dimensional Nonlinear Wave Equations

B.-F. Feng® 1 T. Kawahard i and T. Mitsui§

*Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University,
Kyoto 606-8501, Japan; ariGraduate School of Human Informatics,
Nagoya University, Nagoya 464-8601, Japan
E-mail: ffeng@impact.kuaero.kyoto-u.ac.jfkawahara@impact.kuaero.kyoto-u.ac.jp;
§a41794a@nucc.cc.nagoya-u.ac.jp

Received December 14, 1998; revised May 4, 1999

A conservative spectral method is proposed to solve several two-dimensional non-
linear wave equations. The conventional fast Fourier transform is used to approximate
the spatial derivatives and a three-level difference scheme with a free pararseter
to advance the solution in time. Our time discretization is semi-implicit in the sense
that the linear terms are treated implicitly while the nonlinear terms are evaluated
only by previous time levels, and thus treated explicitly. However, the cost of the al-
gorithm is no greater than that of a fully explicit method because the linear boundary
value problem that must be solved at each time step is almost trivial in a spectral
spatial discretization. A linear stability analysis shows that the method leads to a
less restrictive stability condition than the corresponding explicit one. The method
is conservative and the ratio of the numerical dispersion to the physical dispersion
is of the orderO(At?). Applications of our method to the Kadomtsev—Petviashvili
and the Zakharov—Kuznetsov equations exhibit excellent resuti.999 Academic press

Key Words:conservative spectral method; linear stability analysis; numerical
dispersion; Riemann theta-function solution; lump-type solitdrphase solution;
guasi-soliton.

1. INTRODUCTION

The numerical solution of nonlinear wave equations has been the subject of many st
over the pastthree decades. Although many numerical schemes have been proposed ft
well-known one-dimensional equations, such as the Korteweg—de Vries (KdV) equz
[4,6,7,20,23, 25, 28] and the nonlinear Swattiriger (NLS) equation [10, 12, 21, 27], ther:
is little numerical analysis literature for the multi-dimensional nonlinear wave equatic
Usually, an extension of a numerical method for the one-dimensional nonlinear equa
to the multi-dimensional case is a difficult problem and raises a more restrictive stat
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condition. Wineberget al. proposed an implicit spectral method for wave propagatio
problems with applications to the KdV and the Kadomtsev—Petviashvili (KP) equatio
[26], but their method has the disadvantage of having to solve the nonlinear equations
iterative procedure at every time step.

We note that the third- and the fifth-order KdV equations possess the special featt
that the higher order spatial derivatives arise only in the linear part, and the nonlinear |
contains at most terms ofanduy, and give a conservative spectral method for the third
and the fifth-order KdV equations [3]. Actually, some typical two-dimensional nonline:
wave equations share the same properties as the third- and the fifth-order KdV equati
Examples are the KP equation

(Ut + (3U2)x + Uxxx)x - 352Uyy =0, (1)
and the Zakharov—Kuznetsov (ZK) equation
U + (3u?)y + Auy =0, 2

whereo? is a real constant andl = 87 + 9 is the two-dimensional Laplacian.

The KP equation may be thought of as a two-dimensional analog of the KdV equati
It is one of the classical prototype problems in the field of exactly solvable equations,
arises in physical contexts of plasma physics and surface water waves.

The ZK equation can be thought of as another form of a two-dimensional generalizat
of the KdV equation. It was first derived by Zakharov and Kuznetsov to describe nonline
ion-acoustic waves in a magnetized plasma [29]. In the purely dispersive limit, a variety
physical phenomena are governed by Eg. (2), for example, the long waves on a thin lic
film [14, 24], the Rossby waves in rotating atmosphere [17], and the isolated vortex of
drift waves in three-dimensional plasma [16]. Unlike the KP equation, the ZK equation t
no closed form of analytical solutions.

In this paper, we extend our conservative spectral method for the third- and the fifth-or
KdV equations to several two-dimensional nonlinear wave equations. Although our anal
is expressed for the above two typical equations, it can be applied to other two-dimensi
nonlinear wave equations straightforwardly as well.

Our general framework for numerical approximations can be described as follows:
employ the standard spectral methods (fast Fourier transform, FFT) for the spatial
cretization of the equations, while for the time integration we use a three-level differer
scheme with a free parametefor the linear terms and the leapfrog scheme for the nonlin
ear terms. Since we employ the leapfrog method for the nonlinear part, it should be stre:
that we avoid solving the nonlinear algebraic equations.

This paperis arranged as follows: In Section 2, we propose a conservative spectral me
for the two-dimensional nonlinear wave equations. Section 3 is devoted to the analyse
the scheme with respect to linear stability, accuracy, and numerical dispersion. Numer
experiments with various initial conditions for the KP and the ZK equations are reportec
Section 4. Comments and conclusions are contained in Section 5.

2. ASPECTRAL METHOD FOR NONLINEAR DISPERSIVE WAVE EQUATIONS

2.1. Notations and Definitions

We restrict ourselves to Eqgs. (1)—(2) of finite spatial domain with periodic bounda
conditions. This is a standard procedure in dealing with wave phenomena. Conseque
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we work on a periodic domaif = [0, W] x [0, Wy]. First, we introduce some nota-
tions for the discrete Fourier transformation (DFT). We assume that the domain in
x-direction is equidiscretized, with spacing = W /L, while the domain in thg-direction

is also equidiscretized, with spacimgy =W,/M. We assumé. and M are even inte-
gers. On the grid point&s, ym) = (I AX, mAy) of the domair2 with1 €{0, 1, ..., L—1}

andm € {0, 1, ..., M—1}, the solution valuei(x, ym, t) is approximated ag, m(t). Let
the corresponding spectral variables be dendieg 2w p/ W, and nq =2rq/W), with
pe{-L/2,...,-1,0,1,...,L/2} andqe{—M/2,...,-1,0,1,..., M/2}. Then DFT
is given by
L-1 M-1 L L
M — — —i(EpX+ m) — _ _ _
Upyq—]:UI,m—ZZUI,me'pm Nq i , p_—2,..., 1,0,1,...,2 1,
1=0 m=0
M M
=——,...,-10,1,..., — -1
=3 2

The corresponding inverse DFT is defined as

L/2-1 M/2-1

1 )
1A ~ m
Um=F"0a =y D D Ope€®men,
p=-L/2 g=—M/2

I=01,...,L -1, m=0,1....,M -1

We employ, of course, the FFT for the DFT and its inverse, andlttaredM are the powers
of 2.

2.2. Spectral Method

The Fourier transformation converts Eqgs. (1) and (2) into
Oc +iEF(3U) — (8% + 30%%/6)0 =0 ®)
and
Oy +iEF@BUD) —i(E3+ 0’60 =0, (4

respectively. Usually, an explicit numerical ordinary differential equation (ODE) solver
Egs. (3)—(4) suffers from a restrictive stability condition on the time step due to the existe
of dispersive terms in Egs. (1)—(2). Implicit methods may allow one to avoid the severe't
step restriction, but they are too costly. We therefore make a compromise.

For the time integration of Egs. (3)—(4), we employ a symmetric three-level differer
method for the linear terms and the leapfrog method for the nonlinear terms, which ca
written as

0n+l _nn-1 ) ) ~ . ~
oar IEF((BUM?) — (&3 + 302n?/6)[0@™ T + 0" + (1 - 20)0"] =0 (5)

for the KP equation and
0n+1 _ Gn—l

TN iEF(BUM?) — i3+ 26 [0 + 0" ) + (1 —20)0" =0 (6)
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for the ZK equation, where is a free parameter of the method and the superscript denot
the time level.

In addition, we give the scheme by Winebeitgal. (hereafter referred to as the Wineberg
scheme). They employ the Crank—Nicolson scheme for the temporal discretization, to (

gntl_gn

— %is(f(@un)z) + F((BuMh?) — %i(gS +302? /LA™ +0M] =0. (7)

To solve this nonlinear equations, the iteration procedure

unJrl 0

=0 (8)
-1
n+lr+1 <1 (E +30_2 2/§)>

(u ——[lé(f((Su”>)+f<(3u”+“2)) i(&3+ 302 /S)O”]> 9)

is employed for =0, 1, ..., R— 1, whereRis the iteration number in each time step.

Since we use three time levels in Egs. (5) and (6), we need one extra initial approxir
solution vectors. These can be obtained from a certain one-step spectral method witt
same order in the temporal discretization. The schemes (5) and (6) are apparently s
implicit, but the computation can be implemented explicitly. We stress that in each tir
step only twice are FFTs required. Thus, we can expect that our method is more effic
than the method (9).

2.3. Features of Our Method

Spectral methods, or, more strictly speaking, pseudospectral methods, have been e
sively studied and widely applied. We refer the interested reader to monographs by Gott
and Orszag [15], Boyd [1], and Fornberg [5], and references cited therein. For instance
FFT pseudospectral method has recently been applied to water wave equations [19].

Many of the preceding works employ algorithms of higher order in time stepping. How
ever, here we propose an algorithm of only second order. This is because we want a s
scheme for a long time step, which implies an implicit or semi-implicit scheme. It is po
sible to develop semi-implicit schemes of higher order, but these are expensive; there
we restrict our scheme to a second order one.

As will be analysed in Section 3, our method is free of dissipation and can only introdt
a numerical dispersion dd(At®). This error increases as the wavenumber increases, a
therefore the Fourier components will be distorted. In the case of nonlinear dispersive wa
the energy will transfer from low wavenumbers to high wavenumbers, while, due to t
dispersive terms, the rate of energy transfer may be balanced and usually a local stru
such as the soliton will arise. Therefore, to ensure accuracy, the wavenumbers of a relat
broad range have to be considered and computed even though they are distorted in .
way.

As explained in the last paragraph of the previous subsection, here we stress agair
our algorithm has the advantage of semi-implicitness. That is, in Eq. (5), for example,
implicitness is introduced only in the linear terms. Thus the boundary value problem to
solved in each step is quite inexpensive.



CONSERVATIVE SPECTRAL METHOD FOR NONLINEAR WAVE 471

3. ANALYSES OF THE SCHEME

3.1. Linear Stability Analysis

In this subsection, we analyze the stability of our scheme to the linearized KP equa
(Ut + Uy + Uxx)x — 302Uy = 0 (10)
and the linearized ZK equation
Ui + aUy + Aux =0, (1))

wherex = 6 max|u|. The usual stability analysis process will be employed. That is, stabil
properties of the scheme are determined by the location of the roots of its characte
polynomial. To this end we introduce the following definitions.

DerINITION 1. A polynomialg () all of whose roots lie strictly within the unit disk is
called a Schur polynomial.

DEFINITION 2. A polynomialg (z) all of whose roots never locate outside of the uni
disk, and satisfying any root of the unit modulus that is simple, is called a simple \
Neumann polynomial.

DEeFINITION 3. A numerical scheme is stable if and only if its characteristic polynomi
¢ (2) is a simple von Neumann polynomial.

Given the polynomiad (z) = Zszoaj z) of degreeN with ay, ag # 0, we can obtain a
polynomialg;(z) of degreeN — 1 by introducingp*(z) = ZjN:O N-j Z (wherea* denotes
the complex conjugate @) and defining

*(0 _ 0)o*
$1(2) = ¢" (09 (2 Z¢( )¢ (@)

Now we apply the following theorem.

THEOREM1. ¢(2) is a simple von Neumann polynomial if and only if eithi&t(0)| >
|¢(0)] and ¢1(2) is a simple von Neumann polynomial ¢1(z) =0 and (d/d2)¢(z) is a
Schur polynomial.

The scheme (5) applied to the linearized Eq. (10) implies

gn+l _ gn-1

oap HieEN" —iE + 3057/ +0MH + (1-20)0" =0, (12)

which derives the characteristic polynomial given as

dxp(2) = [1 — i2At0(E3 + 3021?/8)] 2% + i2At[ag — (1 — 20)(£° + 30°0?/€)]z
—[1+i2At0(£3 + 302p?%/8)]. (13)

Inview of an application of Theorem 1, itis easy to show th&t0) | = |¢ (0)| ande,(z) =0,
so that we should considéd/dz)¢ (z) given by

2[1 — i2AtO(E3 + 3029?/6)])z + i2At[aE — (1 — 20) (3 + 3021?/€)].
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The requirement that this polynomial be a Schur polynomial demands that
1+ 40%(AD%(E° + 30%0?/6)? > (AD?[g — (1 20) (6% + 30%%/8)]?
or
Py(§.m) >0, (14)
where

P&, 1) = 14 (AD)?[(40 — D)E*(E% + 30292 /£2)?
+20(1 — 20)£2(£2 + 3029 /£2) — a?€7). (15)

It is easily shown thaP, (&, ) can be rewritten as

= 1-20)¢)?
Py (&, m) = (AD*(40 — )| (6% + 30%n%/8) + el 19_1)5
+ 1 — Z(At)zazéz% (16)

Furthermore, assuming> <, from Eq. (14) and (16), we can get a necessary stabilit
condition for the scheme (12), which is

1
la| 162l

At < C1(0) (17)

where the functiorC,(9) is given by

40 —1
Ci(0) = ( ) .
21002 — 60 + 1)

Figure 1 illustrates the curv@; (9) versus) for %1 <6<1.
Similarly, for the linearized scheme of the ZK equation
0n+l _ On—l

I 0" —iES+ 20+ 0" ) + (1-20)0" =0, (18)

0.9
08
0.7
0.6
Ci(6)0.5
04
0.3
0.2
0.1

0 1 1 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
9

FIG. 1. The curveC,(0) versusi.
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we have its stability polynomiap (z),
¢2x(2) = [1 —i2At0(€° + 1°6)] 2
+i2At[a — (1—20)(E3 + EnD)]z— [L+i2At0(E3 + 1%6)].  (19)
The same procedure as above gives the requirement for the linear stability as
1+ (AD?[(40 — DEXE? +nD)? + 2a(1 - 20)E°(8% + 11°) — 67 > 0. (20)
We note that in the interested ranpec 6 < 3,
Qo(€) = 1+ At’[(40 — DE® +20(1 - 20)5* — o’6%] = 0 (21)
implies Eq. (20) is satisfied. Fér> ;11 the positives * fulfilling

, V16Z—46 11— 21— 20)
£ = o (22)
340 — 1)

minimizesQy (§).
Calculation gives the minimum as

—2[(160% — 40 + 1)%? + (646° — 2462 — 660 + 1)] ,
= o,

0= 27(40 — 1)2 (23)

The polynomialQ1,4(¢) attains its minimum-c«3/4 at&*? = /2. Note that this is consis-
tent with the limit of (22)—(23) whef — %1. Consequently, for the usual casespk £* <
£L/2, a necessary stability condition for the scheme (18) of the ZK equation is

(AD? < CZ(SQ), (24)
o
where the functiorC,(0) is given by
27(46 — 1)2

C2(6) = 2[(1602 — 40 + 1)3/2 + (6403 — 2492 — 60 + 1))’

Figure 2 illustrates the cun@,() versus for 3 <6 < 1.

3.8 - 4
3.6 F -
34 B

C4(0)
32 4

28 B

2.6 1 1 1 1
0.25 0.3 0.35 0 0.4 0.45 0.5

FIG. 2. The curveC,(0) versusd.
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Moreover assume the roots ¢f(z) for Egs. (13) and (19) be; and z,. When the
polynomial is von Neumann, from the fact thaf| |z,| = 1 and|z; »| < 1, we can easily see
that|z;| = |z| = 1. Therefore, the schemes (5) and (6) are conservative.

We summarize the above results in the following theorems.

THEOREMZ2. For the linear periodic initial value problem

(U + aly + Uxdx — 302Uy =0, (X, y) xt € 2 x [0, 00),

ux,y, 0) = up(x,y), xX,y) € @,
U(X, y’ t) = U(X + WXv y7 t)a
uex, y, t) = ux, y + Wy, t), (X, y) x t € R? x [0, 00),

whereQ =[0, W,] x [0, Wy], @ € RT, the spectral scheme
0n+1 _ an—l
2At

is conservative and stable provided titat % and the estimatioril7) holds for the time
step size.

+iaE0" — (€3 + 362p?/O) [0 + 0" 1) + (1 —20)0" =0

THEOREM 3. For the linear periodic initial value problem

Ut + aUy + Auy = 0, X, y) xt e Qx]0,o00),
u(x, y, 0) = uo(x, y), X, y) € €,

U(X, y, t) = u(x + Wy, y, t),

ux, y,t) = ux, y + Wy, t), (X, y) x t € R? x [0, 00),

whereQ =[0, Wy] x [0, Wy], @ € RT, the spectral scheme
0n+1 _ an—l

oap sl - (€3 +&EndH[O@ T+ 0" + (1-20)0" =0

is conservative and stable provided t@ts@ < % and the estimatiori24) holds for the
time step size.

3.2. Accuracy and Numerical Dispersion

The methods we are concerned with solve the problem by Fourier analysis in space
by the finite difference method in time. To examine errors incurred by the spectral mett
considered here, we ignore spatial discretization errors and consider only errors assoc
with the temporal discretization. We can easily conclude that the temporal discretizatior
our schemes (5)—(6) are of orderAt?).

Since our schemes for Egs. (1) and (2) are conservative, the truncation error cont
only dispersion errors. For wave simulations, only long waves can be approximated w
Thus, the dispersion error of the higher frequency components is of little significance, ¢
the main interest is in the sufficiently smglland n. We should confirm that numerical
dispersion does not exceed physical dispersion.

We next derive the numerical dispersion in time for the methods (5) and (6). Define
to be the analytical dispersion in one time step; then it can be shown that

Ve = At(—at + A), (25)
where for the KP equatioA = &2 + 302y2/&, and for the ZK equatior = £3 + £52.
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Assume the roots for Egs. (13) and (19) todje, i = 1, 2; then we have the numerical
dispersiony = max(yr1, ¥2).

For small&, n, Taylor's series expansion yields the root with the maximum pha
angle

2
Zmax= 1+ %(azgz —20E(1—20)A — (40 — 1) A®) — iAt(aE — A).

Therefore the numerical dispersion is given by

_1 3(Zmax)

=tan !t — 26

v R o) (26)
Again, by virtue of Taylor's series expansion, we obtain

(Ap)®
6

¥ = At(—aé + A) + (@ — A2 (@& + (120 — DA) + O(AtYH.  (27)

Combining (27) with (25) leads to the numerical dispersion error of the methods (5) .
(6) to be

_@ap?
6

v — Ve (@& — A? (@€ + (129 — DA) + O(AtY. (28)
We comment on the numerical dispersion errors. First, the ratio of the numerical disper
to the physical dispersion of the schemes (5) and (6) is of the @dat?), which is very
small. Second, the dispersion error is proportional to the parametemceforth, provided
the method is stable, the smalkeiis, the smaller the dispersion error is. The numeric:
results in the following section confirm this result.

4. NUMERICAL EXPERIMENTS

Here we will show several numerical experiments to illustrate the efficiency of c
method. We use the FFT subroutines DFOUR inNunerical Recipdibrary [18]. Com-
putations are performed on a Sun UltraSPARC workstation using Fortran 77 4.0 with
double precision arithmetic.

4.1. KP Equation

In the case ofr>=1, Eq. (1) is usually called the KPI equation, whereas in the ca
of 02=—1, it is called the KPII equation. For the KPI equation, there exists a lump-ty
solution which decay a®(1/r?), r? =x?+ y? whenr — co. This lump-type solution can
be expressed as

{=[X + Ay 4+ 3(A% — udt]? + p(y + 61t)% + 1/u?)

ux,y,t)y=4 >
{[X + Ay + 322 — uHt]? + u?(y + 6at)% + 1/u?)

(29)
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It is also shown [13] that the KPII equation admits a large family of solutions of the forn

32
U(Xv y’t) = 2@ In9(¢l’ -~-7¢N | Z)’ (30)
whered (¢1, . .., ¢n | Z) is a Riemann theta function of genlis which may be defined as
the Fourier series
1
01 ....on 1 D)= ) emp(—anan+imT¢>, (31)
my,..., my
wherem” =(my, ..., my) andZ is aN x N symmetric, real, positive-definite Riemann

matrix. Equation (30) is also called thé-phase solution of the KP equation. The phase
variable¢ is defined by

Two-phase solution of the KP equation is first computed in [22]. Recent comparisons w
experiments [8, 9] show that the family of two-phase solutions of KP equations descril
waves in shallow water with surprising accuracy.

Every two-phase solution is spatially periodic in two directions, but it need not be pe
odic in either thex- or y-direction. A subset of solutions that are periodic in bethindy
are symmetric solutions. A symmetric two-phase solution has three independent pare
ters (because it requireg; = 2,5, (1 = w2, andvy = —vy). Symmetric solutions propagate
purely in thex-direction.

The lump-type soliton problems for the KPI equation and the two-phase solution for
KPII equation are both solved numerically using our method (5).

4.1.1. KPI Equation

The lump-type initial condition used for the KPI equation is

{=(x = %0)? + pu2(y — yo)? + 1/u?}
{(X = X0)2 + p2(y — yo)? + 1/u2}?

We adopt the periodic boundary conditions and compute on a damnaif0, 40] x [0, 40]
with the parameterg? = 1.0, Xo = 20.0, yp = 20.0.

According to (29), this lump-type solitary wave will move to the posikvéirection with
velocity 3u2. Figure 3 shows the initial condition and the numerical solution attig&.0.
Stable propagation of the lump-type solitary wave is observed without any deformatior

Collisions of two lump-type solitary waves are also examined in the same way. We ad
the initial conditions

ux,y,0 =4 (33)

= {- — A0 (Y — Yo)l? 20y — vn:)2 2
u(x’yﬁo):4z{ [(X —X0i) + Ai (Y — Yo.i)]* + u{ (Y — Yoi) +1/M|}

o {[X—Xoi +Ai(Y — Yiol2+ ui(y — Vo) + 1/#12}2

(34)

with two sets of values for the parameters

XO,l = 100, Xo’2 = 180, yO,l = y0,2 = 100,
us =15, us = 0.75, A1 = A2 = 0.0,
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X axis

FIG. 3. Stable evolution of one lump-type solitary wavex = 0.3125,At =0.01). (a)t =0.0, (b)t =2.0.

and

Xp,1 = Xo,2 = 100, Yo,1 = 100, Yo,2 = 300,
ui = us =10, A= 1.0, Ao = —10.

According to (29), Eq. (34) represents two lump-type solitary waves initially located
(Xo0.1, Yo.1) and(Xo 2, Yo,2), respectively. The first one moves with velocitigs, = 3()& +
©?) in the positivex-direction andvyy = —611 in the positivey-direction, whereas the
second one moves with velocities x :3(A§+u§) and vy y = —6A,. For the first set,
values of the parameters arg, = 4.5, vo x = 2.25 andvy y = vp y = 0. Henceforth, the first
lump-type solitary wave initially a¢10.0, 20.0) moves faster than the second one initially
at(18.0, 20.0); therefore, it will catch up with and have a “direct collision” with the secon
one. The numerical solutions are shown in Fig. 4. It is amazing that the two lump soli
waves undergo an “inelastic collision”and break into two more lump solitary waves w
equal amplitudes. They move with velocitigs, = vy x & 3.125,v1 y = —vp y & 1.094. This
phenomenon is the same as in [2]. But this time the ripples in the numerical solutiol
[2] disappear due to the high accuracy of our spectral method. The above computati
implemented on a 256 256 grid with At = 0.004.

Forthe second set, values of the parameters;gre= v, x = 6.0 andvy y = —vp y = —6.0.
So these two lump-type solitary waves move close with an angte’@fand encounter an
“indirect collision” afterwards. Figure 5 gives the numerical results via the scheme (5)
a 128x 128 grid withAt =0.01.
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FIG. 4.

FIG. 5.
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Contour curves for a direct collision of two pulses. {& 0.0, (b)t =2.0, (c)t =4.0, (d)t =6.0.
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Itis seen that these two lump solitary waves undergo an “elastic collision” and cross ¢
other with changes neither in their shapes nor in the phase shift. What is the mechanis
the interactions of the two lump-type solitary waves? This remains a topic to be investige

4.1.2. KPII Equation

As in [26], the two-phase solutions of the KPII equation with two sets of values for t
parameters and proper initial phases provide us the initial conditions in our computati
They are

211 = 2o = 1.0, Z10 = 0.15, 1= U2 = 0.25, (35)
v; = —vp = 0.25269207053125 w1 = wy = —1.5429032317052

and

211 = 252 = 1.0, 2z, =0.15, M1 = U2 = 0.25,
v; = 0.5053841410625 v, = 0.0, (36)
w1 = —3.8416214020425 zw, = —0.7766638415928

We take one period in th&-direction and two periods in thg-direction. Thus the
computation domain is 2/ i1, 47 /v1].

Figure 6 shows the surface plot and a contour plot for the initial conditions with 1
parameters given by (35), which is an example for a symmetric two-phase solution of
KPIl equation. The numerical solution on a 128 by 128 grid with= 0.005 at timet = 1.0
is shown in Fig. 7.

With the same time step siz&t = 0.005, comparisons with analytical solutions in the
standardL ,-norms over the two-dimensional spatial mesh and one of the conserva
quantities = 3 // u?(x, y) dx dyare exhibited in Table 1 with= 1, 1, and3. The relative
errors

lu,m — ud AX, mAY)|p

(37)

ud Ax, mAY)|lp

40

4 30

10

FIG. 6. Initial conditions for the two-phase solutiom,(= —v;). (a) Profile. (b) Contour curves.
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1 1 | 2 0
0 5 10 15 20

FIG. 7. Numerical solution for the two-phase solutian & —v;) att = 1.0. (a) Profile. (b) Contour curves.

are computedfop=1, 2, c0. E=| I —1 |/I1|indicates the relative error of the approximate
values in the conserved quantities. Hérstands for the computed value bfSimpson’s
rule was employed for the numerical quadrature of the integrals.

Similarly, Figs. 8 and 9 and Table 2 show the initial conditions, numerical solution
timet=1.0, and relative errors ih, for p=1, 2, co and conservative quantityfor the
parameters (36) witiAt = 0.005.

To make comparisons with the Wineberg scheme, we solve numerically the above
problems again using the schemes (5) and (9). Similarly as in Taha and Ablowitz [23],
fix the L,-norm at the terminating time= 1.0, adjusting the discretization parameters sc
that they minimize the CPU time. Tables 3 and 4 show these results. It can be seen tha
method is more efficient than the Wineberg scheme (9). Especially, one of the consel
quantitiesl is very well preserved.

TABLE 1
Relative Errors in the L,-norms and the Conservative Quantity
E for the Method (5) (v, = —v4)

Grid 0 t Ly L, Lo E(x107®)
64 x 64 : 0.5 0.0046 0.0061 0.0160 0.106
64 x 64 3 1.0 0.0069 0.0099 0.0236 0.317

128x 128 3 0.5 0.0027 0.0033 0.0044 0.015
128x 128 : 1.0 0.0041 0.0048 0.0049 0.020
64 x 64 i 0.5 0.0049 0.0066 0.0166 0.127
64 x 64 : 1.0 0.0085 0.0113 0.0268 0.390
128x 128 : 0.5 0.0036 0.0044 0.0060 0.020
128x 128 : 1.0 0.0055 0.0064 0.0065 0.022
64 x 64 g 0.5 0.0056 0.0017 0.0171 0.135
64 x 64 g 1.0 0.0090 0.0117 0.0257 0.337
128x 128 g 0.5 0.0047 0.0055 0.0075 0.037
128x 128 g 1.0 0.0069 0.0079 0.0082 0.032
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TABLE 2
Relative Errors in the L,-norms and the Conservative Quantity
E for the Method (5) (v>=0)

Grid 0 t Ly L, L E(x107%)
64 x 64 % 0.5 0.0060 0.0104 0.0269 0.262
64 x 64 é 1.0 0.0102 0.0156 0.0373 0.623

128x 128 % 0.5 0.0048 0.0063 0.0085 0.019
128x 128 % 1.0 0.0079 0.0083 0.0091 0.022
64 x 64 3 0.5 0.0074 0.0120 0.0257 0.284
64 x 64 3 1.0 0.0113 0.0185 0.0401 0.766
128x 128 3 0.5 0.0059 0.0089 0.0104 0.032
128x 128 % 1.0 0.0094 0.0117 0.0155 0.032
64 x 64 % 0.5 0.0077 0.0141 0.0232 0.245
64 x 64 % 1.0 0.0114 0.0181 0.0265 0.288
128x 128 % 0.5 0.0069 0.0121 0.0121 0.046
128x 128 % 1.0 0.0113 0.0164 0.0227 0.065

20

10

FIG. 8. Initial condition for the two-phase solutiomy(= 0). (a) Profile. (b) Contour curves.

20

0 5 10 15 20

FIG. 9. Numerical solution for the two-phase solutian £ 0) att =1.0. (a) Profile. (b) Contour curves.
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TABLE 3
Comparison of Computing Times for Two-Phase Solutiong, = —v)
Scheme At CPUs L, L, Le E(x10°%)
Wineberg
R=2 0.0027 336.4 0.0037 0.0047 0.0044 0.886
R=3 0.006 242.4  0.0044 0.0050 0.0050 3.138
Scheme (5)
0= % 0.005 178.6 0.0041 0.0048  0.0049 0.002
0= % 0.0044 202.1 0.0042 0.0049 0.0050 0.016

4.2. ZK Equation

A cylindrically symmetric solitary solution was obtained, and its evolutions as well ¢
interactions were investigated numerically [11]. This type of solitary solution, also call
the bell-shaped pulse, can be expressed as

10
ux, y, t) = g Z an (cos<2n arcco(fr)) - 1), (38)
n=1

wherec is the velocity of the solitary wave solution anek: /(x — ct)2 + y2. The coeffi-
cients are collected in Table 5.

In order to show the effectiveness of the scheme (6), several examples for the propag:
and the interactions of such bell-shaped pulses are computed on a damdh 32] x
[0, 32] with periodic boundary conditions.

First, a single bell-shaped pulse with veloaity 4.0 initially located at(16.0, 16.0) is
assigned as the initial condition. Figure 10 shows the initial condition and the numeri
solution at time = 2.0. It is observed that this single pulse propagates stably like a solit
without any deformation.

Second, two similar pulsesy(= 4.4, c, =4.0) are initially located at16.0, 16.0) and
(26.0, 16.0), respectively. This case is called “direct collision” in [11], because the cente
of the two pulses are situated on the same line with const. Figure 11 shows the contour
plot. It is seen that the collision is almost elastic.

Results of “deviated collision,” i.e., collision of two pulses with their centers slightl
shifted to they-direction, are shown in Fig. 12. Two similar pulses£ 4.4, ¢, =4.0) are

TABLE 4
Comparison of Computing Times for Two-Phase Solution#, = 0)
Scheme At CPUs L, L, Lo E(x107%)
Wineberg

R=2 0.0024 369.8 0.0052 0.0047 0.0046 0.865
R=3 0.0038 339.5 0.0036 0.0049 0.0046 1.504

Scheme (5)
0=1 0.0038 199.4 0.0045 0.0048 0.0053 0.008

0= 0.0032 214.2 0.0038 0.0048 0.0063 0.005

NI wl
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TABLE 5
Coefficients for the Solitary Wave Solution of the ZK Equation

1 2 3 4 5
—1.25529873 0.21722635 0.06452543 0.00540862—-0.00332515
6 7 8 9 10

—0.00281281 —0.00138352 —0.00070289 —0.00020451 —0.00003053

483

located at(16.0, 14.0) and (26.0, 16.0) initially. From Fig. 12, we can see that the two
pulses exchange their amplitudes through the interaction of their tails without merging

each other. Ripples are generated obviously after deviated collision. All the results obte

here are consistent with ones in [11]; however, through the computations, we could L
larger time step sizé&t =0.01, which must lead to numerical instability for the explicit
scheme used in [11].

NS m—n

30

10 10 y axis

20
X axis
30 0

FIG. 10. Evolution of a single bell-shaped pulse for the ZK equatiax & 0.25, At =0.005). (a)t =0.0,

(b)t=2.0.
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4 15 yaxis

X axis

4 {5 vaxis

4 15 vaxis

L I ! L 1 1 0
0 5 10 15 20 25 30

X axis

FIG. 11. Direct collision of two bell-shaped pulsez\x =0.25, At=0.01). (a)t=0.0, (b) t=130,
(c)t=300.
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4 15 yaxis

X axis

4 15 yaxis

X axis

15 Yaxis

X axis

FIG. 12. Deviated collision of two bell-shaped pulseaX=0.25, At=0.01). (a)t=0.0, (b) t=13.0,
(c)t=30.0.
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5. COMMENTS AND CONCLUSIONS

We extend the conservative spectral method for the third- and the fifth-order KdV eq
tions [3] to several two-dimensional nonlinear wave equations, which are characterizec
the linear higher order derivative terms. We employ the standard FFT to approximate
spatial derivatives, while for the time integration, we use a three-level difference sche
with a free parametet for the linear part and the leapfrog scheme for the nonlinear part «
the equations. Henceforth, this method has the disadvantage of needing a starting proce
However, the following merits are obtained.

1. The order of accuracy in time is of order At?).

2. The linear stability conditions of the proposed schemes for the KP and the .
equations are improved compared to the corresponding explicit schemes. In particular
stability limit of the ZK equation is much less restrictive than that of its one-dimension
analog, i.e., the KdV equation, and is independent of the number of Fourier modes.

3. The method is conservative.

4. The ratio of the numerical dispersion to the physical dispersion is of @@&t?),
which is sufficiently small.

5. Although the method is semi-implicit, the computation can be implemented expl
itly, and FFTs are required only twice in each time step.

Although a linearized stability analysis is not sufficient for proving stability and conve
gence of the corresponding nonlinear schemes, the obtained stability conditions are c
sufficient in practice. We carried out many numerical experiments for the KP equati
with various initial conditions, most of which are based on theoretical solutions. Nume
cal results show that our method for the KP equation is faster and more accurate thar
method in [26]. The collisions of the two lump-type solitary waves, whose behavior is s
analytically unknown, are reported and remain an interesting topic of study.

We also implemented the numerical experiments for the propagation and the collision
the quasi-solitons for the ZK equation, as a typical example of the nonintegrable equati
A relatively large time step size is allowed and even then the same results as in [11]
obtained.

Although analyses are carried out to the schemes for the KP and the ZK equations.
same procedure can be applied to other two-dimensional nonlinear wave equations,
as the two-dimensional Benney equation. A forthcoming paper will report the numeri
results for these equations.
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