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A conservative spectral method is proposed to solve several two-dimensional non-
linear wave equations. The conventional fast Fourier transform is used to approximate
the spatial derivatives and a three-level difference scheme with a free parameterθ is
to advance the solution in time. Our time discretization is semi-implicit in the sense
that the linear terms are treated implicitly while the nonlinear terms are evaluated
only by previous time levels, and thus treated explicitly. However, the cost of the al-
gorithm is no greater than that of a fully explicit method because the linear boundary
value problem that must be solved at each time step is almost trivial in a spectral
spatial discretization. A linear stability analysis shows that the method leads to a
less restrictive stability condition than the corresponding explicit one. The method
is conservative and the ratio of the numerical dispersion to the physical dispersion
is of the orderO(1t2). Applications of our method to the Kadomtsev–Petviashvili
and the Zakharov–Kuznetsov equations exhibit excellent results.c© 1999 Academic Press

Key Words:conservative spectral method; linear stability analysis; numerical
dispersion; Riemann theta-function solution; lump-type soliton;N-phase solution;
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1. INTRODUCTION

The numerical solution of nonlinear wave equations has been the subject of many studies
over the past three decades. Although many numerical schemes have been proposed for some
well-known one-dimensional equations, such as the Korteweg–de Vries (KdV) equation
[4, 6, 7, 20, 23, 25, 28] and the nonlinear Schr¨odinger (NLS) equation [10, 12, 21, 27], there
is little numerical analysis literature for the multi-dimensional nonlinear wave equations.
Usually, an extension of a numerical method for the one-dimensional nonlinear equations
to the multi-dimensional case is a difficult problem and raises a more restrictive stability
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condition. Wineberget al. proposed an implicit spectral method for wave propagation
problems with applications to the KdV and the Kadomtsev–Petviashvili (KP) equations
[26], but their method has the disadvantage of having to solve the nonlinear equations via
iterative procedure at every time step.

We note that the third- and the fifth-order KdV equations possess the special features
that the higher order spatial derivatives arise only in the linear part, and the nonlinear part
contains at most terms ofu andux, and give a conservative spectral method for the third-
and the fifth-order KdV equations [3]. Actually, some typical two-dimensional nonlinear
wave equations share the same properties as the third- and the fifth-order KdV equations.
Examples are the KP equation(

ut + (3u2)x + uxxx
)

x − 3σ 2uyy = 0, (1)

and the Zakharov–Kuznetsov (ZK) equation

ut + (3u2)x +1ux = 0, (2)

whereσ 2 is a real constant and1≡ ∂2
x + ∂2

y is the two-dimensional Laplacian.
The KP equation may be thought of as a two-dimensional analog of the KdV equation.

It is one of the classical prototype problems in the field of exactly solvable equations, and
arises in physical contexts of plasma physics and surface water waves.

The ZK equation can be thought of as another form of a two-dimensional generalization
of the KdV equation. It was first derived by Zakharov and Kuznetsov to describe nonlinear
ion-acoustic waves in a magnetized plasma [29]. In the purely dispersive limit, a variety of
physical phenomena are governed by Eq. (2), for example, the long waves on a thin liquid
film [14, 24], the Rossby waves in rotating atmosphere [17], and the isolated vortex of the
drift waves in three-dimensional plasma [16]. Unlike the KP equation, the ZK equation has
no closed form of analytical solutions.

In this paper, we extend our conservative spectral method for the third- and the fifth-order
KdV equations to several two-dimensional nonlinear wave equations. Although our analysis
is expressed for the above two typical equations, it can be applied to other two-dimensional
nonlinear wave equations straightforwardly as well.

Our general framework for numerical approximations can be described as follows: we
employ the standard spectral methods (fast Fourier transform, FFT) for the spatial dis-
cretization of the equations, while for the time integration we use a three-level difference
scheme with a free parameterθ for the linear terms and the leapfrog scheme for the nonlin-
ear terms. Since we employ the leapfrog method for the nonlinear part, it should be stressed
that we avoid solving the nonlinear algebraic equations.

This paper is arranged as follows: In Section 2, we propose a conservative spectral method
for the two-dimensional nonlinear wave equations. Section 3 is devoted to the analyses of
the scheme with respect to linear stability, accuracy, and numerical dispersion. Numerical
experiments with various initial conditions for the KP and the ZK equations are reported in
Section 4. Comments and conclusions are contained in Section 5.

2. A SPECTRAL METHOD FOR NONLINEAR DISPERSIVE WAVE EQUATIONS

2.1. Notations and Definitions

We restrict ourselves to Eqs. (1)–(2) of finite spatial domain with periodic boundary
conditions. This is a standard procedure in dealing with wave phenomena. Consequently
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we work on a periodic domainÄ= [0,Wx]× [0,Wy]. First, we introduce some nota-
tions for the discrete Fourier transformation (DFT). We assume that the domain in the
x-direction is equidiscretized, with spacing1x=Wx/L, while the domain in they-direction
is also equidiscretized, with spacing1y=Wy/M . We assumeL and M are even inte-
gers. On the grid points(xl , ym)= (l1x,m1y) of the domainÄ with l ∈ {0, 1, . . . , L−1}
andm ∈ {0, 1, . . . ,M−1}, the solution valueu(xl , ym, t) is approximated asul ,m(t). Let
the corresponding spectral variables be denotedξp= 2πp/Wx and ηq= 2πq/Wy with
p∈ {−L/2, . . . ,−1, 0, 1, . . . , L/2} andq∈ {−M/2, . . . ,−1, 0, 1, . . . ,M/2}. Then DFT
is given by

ûp,q = Ful ,m =
L−1∑
l=0

M−1∑
m=0

ul ,me−i(ξpxl+ηq ym), p = − L

2
, . . . ,−1, 0, 1, . . . ,

L

2
− 1,

q = −M

2
, . . . ,−1, 0, 1, . . . ,

M

2
− 1.

The corresponding inverse DFT is defined as

ul ,m = F−1ûp,q = 1

L M

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

ûp,qei(ξpxl+ηq ym),

l = 0, 1, . . . , L − 1, m= 0, 1, . . . ,M − 1.

We employ, of course, the FFT for the DFT and its inverse, and thusL andM are the powers
of 2.

2.2. Spectral Method

The Fourier transformation converts Eqs. (1) and (2) into

ût + iξF(3u2)− i(ξ3+ 3σ 2η2/ξ)û = 0 (3)

and

ût + iξF(3u2)− i(ξ3+ η2ξ)û = 0, (4)

respectively. Usually, an explicit numerical ordinary differential equation (ODE) solver to
Eqs. (3)–(4) suffers from a restrictive stability condition on the time step due to the existence
of dispersive terms in Eqs. (1)–(2). Implicit methods may allow one to avoid the severe time
step restriction, but they are too costly. We therefore make a compromise.

For the time integration of Eqs. (3)–(4), we employ a symmetric three-level difference
method for the linear terms and the leapfrog method for the nonlinear terms, which can be
written as

ûn+1− ûn−1

21t
+ iξF((3un)2)− i(ξ3+ 3σ 2η2/ξ)[θ(ûn+1+ ûn−1)+ (1− 2θ)ûn] = 0 (5)

for the KP equation and

ûn+1− ûn−1

21t
+ iξF((3un)2)− i(ξ3+ η2ξ)[θ(ûn+1+ ûn−1)+ (1− 2θ)ûn] = 0 (6)
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for the ZK equation, whereθ is a free parameter of the method and the superscript denotes
the time level.

In addition, we give the scheme by Wineberget al.(hereafter referred to as the Wineberg
scheme). They employ the Crank–Nicolson scheme for the temporal discretization, to give

ûn+1− ûn

1t
+ 1

2
iξ(F((3un)2)+F((3un+1)2))− 1

2
i(ξ3+ 3σ 2η2/ξ)[(ûn+1+ ûn)]= 0. (7)

To solve this nonlinear equations, the iteration procedure

ûn+1,0 = ûn (8)

ûn+1,r+1 =
(

1− i
1t

2
(ξ3+ 3σ 2η2/ξ)

)−1

(
ûn − 1t

2
[iξ(F((3un)2)+ F((3un+1,r )2))− i(ξ3+ 3σ 2η2/ξ)ûn]

)
(9)

is employed forr = 0, 1, . . . , R− 1, whereR is the iteration number in each time step.
Since we use three time levels in Eqs. (5) and (6), we need one extra initial approximate

solution vectors. These can be obtained from a certain one-step spectral method with the
same order in the temporal discretization. The schemes (5) and (6) are apparently semi-
implicit, but the computation can be implemented explicitly. We stress that in each time
step only twice are FFTs required. Thus, we can expect that our method is more efficient
than the method (9).

2.3. Features of Our Method

Spectral methods, or, more strictly speaking, pseudospectral methods, have been exten-
sively studied and widely applied. We refer the interested reader to monographs by Gottlieb
and Orszag [15], Boyd [1], and Fornberg [5], and references cited therein. For instance, the
FFT pseudospectral method has recently been applied to water wave equations [19].

Many of the preceding works employ algorithms of higher order in time stepping. How-
ever, here we propose an algorithm of only second order. This is because we want a stable
scheme for a long time step, which implies an implicit or semi-implicit scheme. It is pos-
sible to develop semi-implicit schemes of higher order, but these are expensive; therefore
we restrict our scheme to a second order one.

As will be analysed in Section 3, our method is free of dissipation and can only introduce
a numerical dispersion ofO(1t3). This error increases as the wavenumber increases, and
therefore the Fourier components will be distorted. In the case of nonlinear dispersive waves,
the energy will transfer from low wavenumbers to high wavenumbers, while, due to the
dispersive terms, the rate of energy transfer may be balanced and usually a local structure
such as the soliton will arise. Therefore, to ensure accuracy, the wavenumbers of a relatively
broad range have to be considered and computed even though they are distorted in some
way.

As explained in the last paragraph of the previous subsection, here we stress again that
our algorithm has the advantage of semi-implicitness. That is, in Eq. (5), for example, the
implicitness is introduced only in the linear terms. Thus the boundary value problem to be
solved in each step is quite inexpensive.
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3. ANALYSES OF THE SCHEME

3.1. Linear Stability Analysis

In this subsection, we analyze the stability of our scheme to the linearized KP equation

(ut + αux + uxxx)x − 3σ 2uyy = 0 (10)

and the linearized ZK equation

ut + αux +1ux = 0, (11)

whereα= 6 max|u|. The usual stability analysis process will be employed. That is, stability
properties of the scheme are determined by the location of the roots of its characteristic
polynomial. To this end we introduce the following definitions.

DEFINITION 1. A polynomialφ(z) all of whose roots lie strictly within the unit disk is
called a Schur polynomial.

DEFINITION 2. A polynomialφ(z) all of whose roots never locate outside of the unit
disk, and satisfying any root of the unit modulus that is simple, is called a simple von
Neumann polynomial.

DEFINITION 3. A numerical scheme is stable if and only if its characteristic polynomial
φ(z) is a simple von Neumann polynomial.

Given the polynomialφ(z)= ∑N
j = 0 aj zj of degreeN with aN,a0 6= 0, we can obtain a

polynomialφ1(z) of degreeN−1 by introducingφ∗(z)= ∑N
j = 0 a∗N− j z

j (wherea∗ denotes
the complex conjugate ofa) and defining

φ1(z) = φ∗(0)φ(z)− φ(0)φ∗(z)
z

.

Now we apply the following theorem.

THEOREM 1. φ(z) is a simple von Neumann polynomial if and only if either|φ∗(0)|>
|φ(0)| andφ1(z) is a simple von Neumann polynomial orφ1(z)≡ 0 and (d/dz)φ(z) is a
Schur polynomial.

The scheme (5) applied to the linearized Eq. (10) implies

ûn+1− ûn−1

21t
+ iαξ ûn − i(ξ3+ 3σ 2η2/ξ)[θ(ûn+1+ ûn−1)+ (1− 2θ)ûn] = 0, (12)

which derives the characteristic polynomial given as

φKP(z) = [1− i21tθ(ξ3+ 3σ 2η2/ξ)]z2+ i21t [αξ − (1− 2θ)(ξ3+ 3σ 2η2/ξ)]z

− [1+ i21tθ(ξ3+ 3σ 2η2/ξ)]. (13)

In view of an application of Theorem 1, it is easy to show that|φ∗(0)| = |φ(0)|andφ1(z)≡ 0,
so that we should consider(d/dz)φ(z) given by

2[1− i21tθ(ξ3+ 3σ 2η2/ξ)]z+ i21t [αξ − (1− 2θ)(ξ3+ 3σ 2η2/ξ)].
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The requirement that this polynomial be a Schur polynomial demands that

1+ 4θ2(1t)2(ξ3+ 3σ 2η2/ξ)2 > (1t)2[αξ − (1− 2θ)(ξ3+ 3σ 2η2/ξ)]2

or

Pθ (ξ, η) > 0, (14)

where

Pθ (ξ, η) ≡ 1+ (1t)2[(4θ − 1)ξ2(ξ2+ 3σ 2η2/ξ2)2

+ 2α(1− 2θ)ξ2(ξ2+ 3σ 2η2/ξ2)− α2ξ2]. (15)

It is easily shown thatPθ (ξ, η) can be rewritten as

Pθ (ξ, η) = (1t)2(4θ − 1)

[
(ξ3+ 3σ 2η2/ξ)+ α (1− 2θ)ξ

4θ − 1

]2

+ 1− 2(1t)2α2ξ2 10θ2− 6θ + 1

(4θ − 1)2
. (16)

Furthermore, assumingθ > 1
4, from Eq. (14) and (16), we can get a necessary stability

condition for the scheme (12), which is

1t < C1(θ)
1

|α| |ξL/2| , (17)

where the functionC1(θ) is given by

C1(θ) = (4θ − 1)√
2(10θ2− 6θ + 1)

.

Figure 1 illustrates the curveC1(θ) versusθ for 1
4 ≤ θ ≤ 1.

Similarly, for the linearized scheme of the ZK equation

ûn+1− ûn−1

21t
+ iαξ ûn − i(ξ3+ η2ξ)[θ(ûn+1+ ûn−1)+ (1− 2θ)ûn] = 0, (18)

FIG. 1. The curveC1(θ) versusθ .
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we have its stability polynomialφ(z),

φZK(z) = [1− i21tθ(ξ3+ η2ξ)]z2

+ i21t [αξ − (1− 2θ)(ξ3+ ξη2)]z− [1+ i21tθ(ξ3+ η2ξ)]. (19)

The same procedure as above gives the requirement for the linear stability as

1+ (1t)2[(4θ − 1)ξ2(ξ2+ η2)2+ 2α(1− 2θ)ξ2(ξ2+ η2)− α2ξ2] > 0. (20)

We note that in the interested range1
4 ≤ θ ≤ 1

2,

Qθ (ξ) ≡ 1+1t2[(4θ − 1)ξ6+ 2α(1− 2θ)ξ4− α2ξ2] ≥ 0 (21)

implies Eq. (20) is satisfied. Forθ > 1
4 the positiveξ ∗ fulfilling

ξ ∗2 =
√

16θ2− 4θ + 1− 2(1− 2θ)

3(4θ − 1)
α (22)

minimizesQθ (ξ).
Calculation gives the minimum as

mθ ≡ −2[(16θ2− 4θ + 1)3/2+ (64θ3− 24θ2− 6θ + 1)]

27(4θ − 1)2
α3. (23)

The polynomialQ1/4(ξ) attains its minimum−α3/4 atξ ∗2=α/2. Note that this is consis-
tent with the limit of (22)–(23) whenθ→ 1

4. Consequently, for the usual case ofξ1<ξ
∗<

ξL/2, a necessary stability condition for the scheme (18) of the ZK equation is

(1t)2 <
C2(θ)

α3
, (24)

where the functionC2(θ) is given by

C2(θ) = 27(4θ − 1)2

2[(16θ2− 4θ + 1)3/2+ (64θ3− 24θ2− 6θ + 1)]
.

Figure 2 illustrates the curveC2(θ) versusθ for 1
4 ≤ θ ≤ 1

2.

FIG. 2. The curveC2(θ) versusθ .
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Moreover assume the roots ofφ(z) for Eqs. (13) and (19) bez1 and z2. When the
polynomial is von Neumann, from the fact that|z1| |z2| =1 and|z1,2| ≤1, we can easily see
that|z1| = |z2| =1. Therefore, the schemes (5) and (6) are conservative.

We summarize the above results in the following theorems.

THEOREM2. For the linear periodic initial value problem

(ut + αux + uxxx)x − 3σ 2uyy = 0, (x, y)× t ∈ Ä× [0,∞),
u(x, y, 0) = u0(x, y), (x, y) ∈ Ä,
u(x, y, t) = u(x +Wx, y, t),

u(x, y, t) = u(x, y+Wy, t), (x, y)× t ∈ R2× [0,∞),
whereÄ= [0,Wx] × [0,Wy], α ∈R+, the spectral scheme

ûn+1− ûn−1

21t
+ iαξ ûn − i(ξ3+ 3σ 2η2/ξ)[θ(ûn+1+ ûn−1)+ (1− 2θ)ûn] = 0

is conservative and stable provided thatθ > 1
4 and the estimation(17) holds for the time

step size.

THEOREM3. For the linear periodic initial value problem

ut + αux +1ux = 0, (x, y)× t ∈ Ä× [0,∞),
u(x, y, 0) = u0(x, y), (x, y) ∈ Ä,
u(x, y, t) = u(x +Wx, y, t),

u(x, y, t) = u(x, y+Wy, t), (x, y)× t ∈ R2× [0,∞),
whereÄ= [0,Wx] × [0,Wy], α ∈ R+, the spectral scheme

ûn+1− ûn−1

21t
+ iαξ ûn − i(ξ3+ ξη2)[θ(ûn+1+ ûn−1)+ (1− 2θ)ûn] = 0

is conservative and stable provided that1
4 ≤ θ ≤ 1

2 and the estimation(24) holds for the
time step size.

3.2. Accuracy and Numerical Dispersion

The methods we are concerned with solve the problem by Fourier analysis in space and
by the finite difference method in time. To examine errors incurred by the spectral method
considered here, we ignore spatial discretization errors and consider only errors associated
with the temporal discretization. We can easily conclude that the temporal discretization of
our schemes (5)–(6) are of orderO(1t2).

Since our schemes for Eqs. (1) and (2) are conservative, the truncation error contains
only dispersion errors. For wave simulations, only long waves can be approximated well.
Thus, the dispersion error of the higher frequency components is of little significance, and
the main interest is in the sufficiently smallξ andη. We should confirm that numerical
dispersion does not exceed physical dispersion.

We next derive the numerical dispersion in time for the methods (5) and (6). Defineψe

to be the analytical dispersion in one time step; then it can be shown that

ψe = 1t (−αξ + A), (25)

where for the KP equationA= ξ3+ 3σ 2η2/ξ , and for the ZK equationA= ξ3+ ξη2.
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Assume the roots for Eqs. (13) and (19) to beeiψi , i = 1, 2; then we have the numerical
dispersionψ = max(ψ1, ψ2).

For small ξ , η, Taylor’s series expansion yields the root with the maximum phase
angle

zmax= 1+ 1t2

2
(α2ξ2− 2αξ(1− 2θ)A− (4θ − 1)A2)− i1t (αξ − A).

Therefore the numerical dispersion is given by

ψ = tan−1 =(zmax)

<(zmax)
. (26)

Again, by virtue of Taylor’s series expansion, we obtain

ψ = 1t (−αξ + A)+ (1t)3

6
(αξ − A)2 (αξ + (12θ − 1)A)+ O(1t4). (27)

Combining (27) with (25) leads to the numerical dispersion error of the methods (5) and
(6) to be

ψ − ψe = (1t)3

6
(αξ − A)2 (αξ + (12θ − 1)A)+ O(1t4). (28)

We comment on the numerical dispersion errors. First, the ratio of the numerical dispersion
to the physical dispersion of the schemes (5) and (6) is of the orderO(1t2), which is very
small. Second, the dispersion error is proportional to the parameterθ . Henceforth, provided
the method is stable, the smallerθ is, the smaller the dispersion error is. The numerical
results in the following section confirm this result.

4. NUMERICAL EXPERIMENTS

Here we will show several numerical experiments to illustrate the efficiency of our
method. We use the FFT subroutines DFOUR in theNumerical Recipelibrary [18]. Com-
putations are performed on a Sun UltraSPARC workstation using Fortran 77 4.0 with the
double precision arithmetic.

4.1. KP Equation

In the case ofσ 2= 1, Eq. (1) is usually called the KPI equation, whereas in the case
of σ 2=−1, it is called the KPII equation. For the KPI equation, there exists a lump-type
solution which decay asO(1/r 2), r 2= x2+ y2 whenr→∞. This lump-type solution can
be expressed as

u(x, y, t) = 4
{−[x + λy+ 3(λ2− µ2)t ]2+ µ2(y+ 6λt)2+ 1/µ2}
{[x + λy+ 3(λ2− µ2)t ]2+ µ2(y+ 6λt)2+ 1/µ2}2 . (29)
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It is also shown [13] that the KPII equation admits a large family of solutions of the form

u(x, y, t) = 2
∂2

∂x2
ln θ(φ1, . . . , φN | Z), (30)

whereθ(φ1, . . . , φN | Z) is a Riemann theta function of genusN, which may be defined as
the Fourier series

θ(φ1, . . . , φN | Z) =
∑

m1,...,mN

exp

(
−1

2
mT Zm+ imTφ

)
, (31)

wheremT = (m1, . . . ,mN) and Z is a N× N symmetric, real, positive-definite Riemann
matrix. Equation (30) is also called theN-phase solution of the KP equation. The phase
variableφ is defined by

φ j = µ j x + ν j y+ ω j t + φ j,0, j = 1, . . . , N. (32)

Two-phase solution of the KP equation is first computed in [22]. Recent comparisons with
experiments [8, 9] show that the family of two-phase solutions of KP equations describes
waves in shallow water with surprising accuracy.

Every two-phase solution is spatially periodic in two directions, but it need not be peri-
odic in either thex- or y-direction. A subset of solutions that are periodic in bothx andy
are symmetric solutions. A symmetric two-phase solution has three independent parame-
ters (because it requiresz11= z22, µ1=µ2, andν1= −ν2). Symmetric solutions propagate
purely in thex-direction.

The lump-type soliton problems for the KPI equation and the two-phase solution for the
KPII equation are both solved numerically using our method (5).

4.1.1. KPI Equation

The lump-type initial condition used for the KPI equation is

u(x, y, 0) = 4

{−(x − x0)
2+ µ2(y− y0)

2+ 1/µ2
}{

(x − x0)2+ µ2(y− y0)2+ 1/µ2
}2 . (33)

We adopt the periodic boundary conditions and compute on a domainÄ= [0, 40]× [0, 40]
with the parametersµ2= 1.0, x0= 20.0, y0= 20.0.

According to (29), this lump-type solitary wave will move to the positivex-direction with
velocity 3µ2. Figure 3 shows the initial condition and the numerical solution at timet = 2.0.
Stable propagation of the lump-type solitary wave is observed without any deformation.

Collisions of two lump-type solitary waves are also examined in the same way. We adopt
the initial conditions

u(x, y, 0) = 4
2∑

i=1

{−[(x − x0,i )+ λi (y− y0,i )]2+ µ2
i (y− y0,i )

2+ 1
/
µ2

i

}{
[x − x0,i + λi (y− yi,0)]2+ µ2

i (y− y0,i )2+ 1
/
µ2

i

}2 (34)

with two sets of values for the parameters

x0,1 = 10.0, x0,2 = 18.0, y0,1 = y0,2 = 10.0,

µ2
1 = 1.5, µ2

2 = 0.75, λ1 = λ2 = 0.0,
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FIG. 3. Stable evolution of one lump-type solitary wave (1x= 0.3125,1t = 0.01). (a)t = 0.0, (b) t = 2.0.

and

x0,1 = x0,2 = 10.0, y0,1 = 10.0, y0,2 = 30.0,

µ2
1 = µ2

2 = 1.0, λ1 = 1.0, λ2 = −1.0.

According to (29), Eq. (34) represents two lump-type solitary waves initially located at
(x0,1, y0,1) and(x0,2, y0,2), respectively. The first one moves with velocitiesv1,x = 3(λ2

1+
µ2

1) in the positivex-direction andv1,y=−6λ1 in the positivey-direction, whereas the
second one moves with velocitiesv2,x = 3(λ2

2+µ2
2) and v2,y=−6λ2. For the first set,

values of the parameters arev1,x = 4.5, v2,x = 2.25 andv1,y= v2,y= 0. Henceforth, the first
lump-type solitary wave initially at(10.0, 20.0) moves faster than the second one initially
at(18.0, 20.0); therefore, it will catch up with and have a “direct collision” with the second
one. The numerical solutions are shown in Fig. 4. It is amazing that the two lump solitary
waves undergo an “inelastic collision”and break into two more lump solitary waves with
equal amplitudes. They move with velocitiesv1,x = v2,x ≈ 3.125,v1,y=−v2,y≈ 1.094. This
phenomenon is the same as in [2]. But this time the ripples in the numerical solution in
[2] disappear due to the high accuracy of our spectral method. The above computation is
implemented on a 256× 256 grid with1t = 0.004.

For the second set, values of the parameters arev1,x = v2,x = 6.0 andv1,y=−v2,y=−6.0.
So these two lump-type solitary waves move close with an angle ofπ/2 and encounter an
“indirect collision” afterwards. Figure 5 gives the numerical results via the scheme (5) on
a 128× 128 grid with1t = 0.01.
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FIG. 4. Contour curves for a direct collision of two pulses. (a)t = 0.0, (b) t = 2.0, (c) t = 4.0, (d) t = 6.0.

FIG. 5. Contour curves for an indirect collision of two pulses. (a)t = 0.0, (b) t = 2.0, (c) t = 4.0, (d) t = 6.0.
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It is seen that these two lump solitary waves undergo an “elastic collision” and cross each
other with changes neither in their shapes nor in the phase shift. What is the mechanism for
the interactions of the two lump-type solitary waves? This remains a topic to be investigated.

4.1.2. KPII Equation

As in [26], the two-phase solutions of the KPII equation with two sets of values for the
parameters and proper initial phases provide us the initial conditions in our computations.
They are

z11 = z22 = 1.0, z12 = 0.15, µ1 = µ2 = 0.25,

ν1 = −ν2 = 0.25269207053125, ω1 = ω2 = −1.5429032317052,
(35)

and

z11 = z22 = 1.0, z12 = 0.15, µ1 = µ2 = 0.25,

ν1 = 0.5053841410625, ν2 = 0.0,

ω1 = −3.8416214020425, zω2 = −0.7766638415928.

(36)

We take one period in thex-direction and two periods in they-direction. Thus the
computation domain is [2π/µ1, 4π/ν1].

Figure 6 shows the surface plot and a contour plot for the initial conditions with the
parameters given by (35), which is an example for a symmetric two-phase solution of the
KPII equation. The numerical solution on a 128 by 128 grid with1t = 0.005 at timet = 1.0
is shown in Fig. 7.

With the same time step size1t = 0.005, comparisons with analytical solutions in the
standardL p-norms over the two-dimensional spatial mesh and one of the conservative
quantitiesI = 1

2 ∫∫ u2(x, y) dx dyare exhibited in Table 1 withθ = 1
3,

1
2, and2

3. The relative
errors

‖ul ,m − u(l1x,m1y)‖p

‖u(l1x,m1y)‖p
(37)

FIG. 6. Initial conditions for the two-phase solution (ν2=−ν1). (a) Profile. (b) Contour curves.
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FIG. 7. Numerical solution for the two-phase solution (ν2=−ν1) at t = 1.0. (a) Profile. (b) Contour curves.

are computed forp= 1, 2,∞. E= | Ī − I |/|I | indicates the relative error of the approximate
values in the conserved quantities. HereĪ stands for the computed value ofI . Simpson’s
rule was employed for the numerical quadrature of the integrals.

Similarly, Figs. 8 and 9 and Table 2 show the initial conditions, numerical solution at
time t = 1.0, and relative errors inL p for p= 1, 2,∞ and conservative quantityI for the
parameters (36) with1t = 0.005.

To make comparisons with the Wineberg scheme, we solve numerically the above two
problems again using the schemes (5) and (9). Similarly as in Taha and Ablowitz [23], we
fix the L2-norm at the terminating timet = 1.0, adjusting the discretization parameters so
that they minimize the CPU time. Tables 3 and 4 show these results. It can be seen that our
method is more efficient than the Wineberg scheme (9). Especially, one of the conserved
quantitiesI is very well preserved.

TABLE 1

Relative Errors in the Lp-norms and the Conservative Quantity

E for the Method (5) (ν2 =−ν1)

Grid θ t L1 L2 L∞ E(×10−3)

64× 64 1
3

0.5 0.0046 0.0061 0.0160 0.106

64× 64 1
3

1.0 0.0069 0.0099 0.0236 0.317

128× 128 1
3

0.5 0.0027 0.0033 0.0044 0.015

128× 128 1
3

1.0 0.0041 0.0048 0.0049 0.020

64× 64 1
2

0.5 0.0049 0.0066 0.0166 0.127

64× 64 1
2

1.0 0.0085 0.0113 0.0268 0.390

128× 128 1
2

0.5 0.0036 0.0044 0.0060 0.020

128× 128 1
2

1.0 0.0055 0.0064 0.0065 0.022

64× 64 2
3

0.5 0.0056 0.0017 0.0171 0.135

64× 64 2
3

1.0 0.0090 0.0117 0.0257 0.337

128× 128 2
3

0.5 0.0047 0.0055 0.0075 0.037

128× 128 2
3

1.0 0.0069 0.0079 0.0082 0.032
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TABLE 2

Relative Errors in the Lp-norms and the Conservative Quantity

E for the Method (5) (ν2 = 0)

Grid θ t L1 L2 L∞ E(×10−3)

64× 64 1
3

0.5 0.0060 0.0104 0.0269 0.262

64× 64 1
3

1.0 0.0102 0.0156 0.0373 0.623

128× 128 1
3

0.5 0.0048 0.0063 0.0085 0.019

128× 128 1
3

1.0 0.0079 0.0083 0.0091 0.022

64× 64 1
2

0.5 0.0074 0.0120 0.0257 0.284

64× 64 1
2

1.0 0.0113 0.0185 0.0401 0.766

128× 128 1
2

0.5 0.0059 0.0089 0.0104 0.032

128× 128 1
2

1.0 0.0094 0.0117 0.0155 0.032

64× 64 2
3

0.5 0.0077 0.0141 0.0232 0.245

64× 64 2
3

1.0 0.0114 0.0181 0.0265 0.288

128× 128 2
3

0.5 0.0069 0.0121 0.0121 0.046

128× 128 2
3

1.0 0.0113 0.0164 0.0227 0.065

FIG. 8. Initial condition for the two-phase solution (ν2= 0). (a) Profile. (b) Contour curves.

FIG. 9. Numerical solution for the two-phase solution (ν2= 0) att = 1.0. (a) Profile. (b) Contour curves.
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TABLE 3

Comparison of Computing Times for Two-Phase Solution (ν2 =−ν1)

Scheme 1t CPUs L1 L2 L∞ E(×10−3)

Wineberg
R= 2 0.0027 336.4 0.0037 0.0047 0.0044 0.886
R= 3 0.006 242.4 0.0044 0.0050 0.0050 3.138

Scheme (5)
θ = 1

3
0.005 178.6 0.0041 0.0048 0.0049 0.002

θ = 1
2

0.0044 202.1 0.0042 0.0049 0.0050 0.016

4.2. ZK Equation

A cylindrically symmetric solitary solution was obtained, and its evolutions as well as
interactions were investigated numerically [11]. This type of solitary solution, also called
the bell-shaped pulse, can be expressed as

u(x, y, t) = c

3

10∑
n=1

a2n

(
cos

(
2n arccot

(√
c

2
r

))
− 1

)
, (38)

wherec is the velocity of the solitary wave solution andr =
√
(x − ct)2+ y2. The coeffi-

cients are collected in Table 5.
In order to show the effectiveness of the scheme (6), several examples for the propagation

and the interactions of such bell-shaped pulses are computed on a domainÄ= [0, 32]×
[0, 32] with periodic boundary conditions.

First, a single bell-shaped pulse with velocityc= 4.0 initially located at(16.0, 16.0) is
assigned as the initial condition. Figure 10 shows the initial condition and the numerical
solution at timet = 2.0. It is observed that this single pulse propagates stably like a soliton
without any deformation.

Second, two similar pulses (c1= 4.4, c2= 4.0) are initially located at(16.0, 16.0) and
(26.0, 16.0), respectively. This case is called “direct collision” in [11], because the centers
of the two pulses are situated on the same line withy= const. Figure 11 shows the contour
plot. It is seen that the collision is almost elastic.

Results of “deviated collision,” i.e., collision of two pulses with their centers slightly
shifted to they-direction, are shown in Fig. 12. Two similar pulses (c1= 4.4, c2= 4.0) are

TABLE 4

Comparison of Computing Times for Two-Phase Solution (ν2 = 0)

Scheme 1t CPUs L1 L2 L∞ E(×10−3)

Wineberg
R= 2 0.0024 369.8 0.0052 0.0047 0.0046 0.865
R= 3 0.0038 339.5 0.0036 0.0049 0.0046 1.504

Scheme (5)
θ = 1

3
0.0038 199.4 0.0045 0.0048 0.0053 0.008

θ = 1
2

0.0032 214.2 0.0038 0.0048 0.0063 0.005



CONSERVATIVE SPECTRAL METHOD FOR NONLINEAR WAVE 483

TABLE 5

Coefficients for the Solitary Wave Solution of the ZK Equation

n: 1 2 3 4 5
a2n: −1.25529873 0.21722635 0.06452543 0.00540862−0.00332515

n: 6 7 8 9 10
a2n: −0.00281281 −0.00138352 −0.00070289 −0.00020451 −0.00003053

located at(16.0, 14.0) and (26.0, 16.0) initially. From Fig. 12, we can see that the two
pulses exchange their amplitudes through the interaction of their tails without merging with
each other. Ripples are generated obviously after deviated collision. All the results obtained
here are consistent with ones in [11]; however, through the computations, we could use a
larger time step size1t = 0.01, which must lead to numerical instability for the explicit
scheme used in [11].

FIG. 10. Evolution of a single bell-shaped pulse for the ZK equation (1x= 0.25,1t = 0.005). (a)t = 0.0,
(b) t = 2.0.
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FIG. 11. Direct collision of two bell-shaped pulses (1x= 0.25, 1t = 0.01). (a) t = 0.0, (b) t = 13.0,
(c) t = 30.0.
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FIG. 12. Deviated collision of two bell-shaped pulses (1x= 0.25, 1t = 0.01). (a) t = 0.0, (b) t = 13.0,
(c) t = 30.0.
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5. COMMENTS AND CONCLUSIONS

We extend the conservative spectral method for the third- and the fifth-order KdV equa-
tions [3] to several two-dimensional nonlinear wave equations, which are characterized by
the linear higher order derivative terms. We employ the standard FFT to approximate the
spatial derivatives, while for the time integration, we use a three-level difference scheme
with a free parameterθ for the linear part and the leapfrog scheme for the nonlinear part of
the equations. Henceforth, this method has the disadvantage of needing a starting procedure.
However, the following merits are obtained.

1. The order of accuracy in time is of orderO(1t2).
2. The linear stability conditions of the proposed schemes for the KP and the ZK

equations are improved compared to the corresponding explicit schemes. In particular, the
stability limit of the ZK equation is much less restrictive than that of its one-dimensional
analog, i.e., the KdV equation, and is independent of the number of Fourier modes.

3. The method is conservative.
4. The ratio of the numerical dispersion to the physical dispersion is of orderO(1t2),

which is sufficiently small.
5. Although the method is semi-implicit, the computation can be implemented explic-

itly, and FFTs are required only twice in each time step.

Although a linearized stability analysis is not sufficient for proving stability and conver-
gence of the corresponding nonlinear schemes, the obtained stability conditions are often
sufficient in practice. We carried out many numerical experiments for the KP equation
with various initial conditions, most of which are based on theoretical solutions. Numeri-
cal results show that our method for the KP equation is faster and more accurate than the
method in [26]. The collisions of the two lump-type solitary waves, whose behavior is still
analytically unknown, are reported and remain an interesting topic of study.

We also implemented the numerical experiments for the propagation and the collisions of
the quasi-solitons for the ZK equation, as a typical example of the nonintegrable equations.
A relatively large time step size is allowed and even then the same results as in [11] are
obtained.

Although analyses are carried out to the schemes for the KP and the ZK equations, the
same procedure can be applied to other two-dimensional nonlinear wave equations, such
as the two-dimensional Benney equation. A forthcoming paper will report the numerical
results for these equations.
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